เซต
โครงสร้างต่าง ๆ ที่นักคณิตศาสตร์สนใจและพิจารณานั้น มักจะมีต้นกำเนิดจากวิทยาศาสตร์ธรรมชาติ และสังคมศาสตร์ โดยเฉพาะฟิสิกส์ และเศรษฐศาสตร์ ปัญหาทางคณิตศาสตร์ในปัจจุบัน ยังเกี่ยวข้องกับการประยุกต์ใช้ในสาขาวิทยาการคอมพิวเตอร์ และทฤษฎีการสื่อสาร อีกด้วย
เนื่องจากคณิตศาสตร์นั้นใช้ตรรกศาสตร์สัญลักษณ์และสัญกรณ์คณิตศาสตร์ ซึ่งทำให้กิจกรรมทุกอย่างกระทำผ่านทางขั้นตอนที่ชัดเจน เราจึงสามารถพิจารณาคณิตศาสตร์ว่า เป็นระบบภาษาที่เพิ่มความแม่นยำและชัดเจนให้กับภาษาธรรมชาติ ผ่านทางศัพท์และไวยากรณ์บางอย่าง สำหรับการอธิบายและศึกษาความสัมพันธ์ทั้งทางกายภาพและนามธรรม ความหมายของคณิตศาสตร์นั้นยังมีอีกหลายมุมมอง ซึ่งหลายอันถูกกล่าวถึงในบทความเกี่ยวกับปรัชญาของคณิตศาสตร์
คณิตศาสตร์ยังถูกจัดว่าเป็นศาสตร์สัมบูรณ์ โดยจำไม่เป็นต้องมีการอ้างถึงใด ๆ จากโลกภายนอก นักคณิตศาสตร์กำหนดและพิจารณาโครงสร้างบางประเภท สำหรับใช้ในคณิตศาสตร์เองโดยเฉพาะ, เนื่องจากโครงสร้างเหล่านี้ อาจทำให้สามารถอธิบายสาขาย่อย ๆ หลาย ๆ สาขาได้ในภาพรวม หรือเป็นประโยชน์ในการคำนวณพื้นฐาน
นอกจากนี้ นักคณิตศาสตร์หลายคนก็ทำงานเพื่อเป้าหมายเชิงสุนทรียภาพเท่านั้น โดยมองว่าคณิตศาสตร์เป็นศาสตร์เชิงศิลปะ มากกว่าที่จะเป็นศาสตร์เพื่อการนำไปประยุกต์ใช้ (ดังเช่น จี. เอช. ฮาร์ดี ที่ได้กล่าวไว้ในหนังสือ A Mathematician's Apology) ; แรงผลักดันในการทำงานเช่นนี้ มีลักษณะไม่ต่างไปจากที่กวีและนักปรัชญาได้ประสบ และเป็นสิ่งที่ไม่สามารถอธิบายได้. อัลเบิร์ต ไอน์สไตน์กล่าวว่า คณิตศาสตร์เป็นราชินีของวิทยาศาสตร์ ในหนังสือ Ideas and Opinions ของเขา
องค์ความรู้ในคณิตศาสตร์รวมกันเป็นสาขาวิชา หลักการเบื้องต้นที่เริ่มจากเลขคณิตไปยังการประยุกต์ใช้งานพื้นฐานของสาขาคณิตศาสตร์ ที่รวมพีชคณิต เรขาคณิต ตรีโกณมิติ สถิติศาสตร์ และแคลคูลัส เป็นหลักสูตรแกนในการศึกษาขั้นพื้นฐาน แม้ว่าจะได้มีการพัฒนาและขยายขอบเขตไปอย่างมากมายในช่วงเวลาหลายร้อยปี สาขาวิชาคณิตศาสตร์ยังคงถูกจัดว่าเป็นสาขาวิชาเดี่ยว ที่มีลักษณะแตกต่างจากสาขาอื่น ๆ
นิยาม
ตอนเริ่มแรกของ Beiträge zur Begründung der transfiniten Mengenlehre โดย เกออร์ก คันทอร์ (Georg Cantor) ผู้สร้างทฤษฎีเซตคนสำคัญ ให้นิยามของเซตเซตหนึ่งดังต่อไปนี้:[1]โดย "เซต" เซตหนึ่ง เราหมายถึงการสะสมรวบรวมใดๆ ที่ให้ชื่อว่า M เข้าเป็นหน่วยเดียวกันทั้งหมด ของวัตถุที่ให้ชื่อว่า m ที่แตกต่างกัน (ซึ่งเรียกว่า "สมาชิก" ของ M) ตามความเข้าใจของเรา หรือตามความคิดของเราดังนั้นสมาชิกของเซตเซตหนึ่งจึงสามารถเป็นอะไรก็ได้ เช่น ตัวเลข ผู้คน ตัวอักษร หรือเป็นเซตของเซตอื่น เป็นต้น เซตนิยมเขียนแทนด้วยอักษรตัวใหญ่ เช่น A, B, C ฯลฯ ตามธรรมเนียมปฏิบัติ ในประโยคที่ว่า เซต A และ B เท่ากัน หมายความว่า ทั้งเซต A และเซต B มีสมาชิกทั้งหมดเหมือนกัน (ตัวอย่างเช่น สมาชิกทุกตัวที่อยู่ในเซต A ก็ต้องเป็นสมาชิกของเซต B ด้วย เขียนแทนด้วย A = B และในทางกลับกันก็เป็นเช่นเดียวกัน เขียนแทนด้วย B = A)สมาชิกทุกตัวของเซตเซตหนึ่งต้องไม่ซ้ำกัน และจะไม่มีสมาชิกสองตัวใดในเซตเดียวกันที่เหมือนกันทุกประการ ซึ่งไม่เหมือนกับมัลทิเซต (multiset) ที่อาจมีสมาชิกซ้ำกันก็ได้ การดำเนินการของเซตทั้งหมดยังรักษาคุณสมบัติที่ว่าสมาชิกแต่ละตัวของเซตต้องไม่ซ้ำกัน ส่วนการเรียงลำดับของสมาชิกของเซตนั้นไม่มีความสำคัญ ซึ่งต่างจากลำดับอนุกรมหรือคู่อันดับถึงอย่างไรก็ตามเซตถือว่าเป็น อนิยาม ไม่มีนิยามที่ชัดเจนและครอบคลุม= การเขียนอธิบายเซตA เป็นเซตซึ่งสมาชิกของมันเป็น เลขจำนวนเต็มบวกสี่ตัวแรกมีสองวิธีในการเขียนอธิบาย หรือระบุถึงสมาชิกของเซตเซตหนึ่ง วิธีที่หนึ่งคือโดยการกำหนดนิยามอย่างตั้งใจด้วยการใช้กฎหรือการอธิบายด้วย ภาษาทางคณิตศาสตร์ ดูตัวอย่างนี้:- B เป็นเซตของสีของ ธงชาติฝรั่งเศส
วิธีที่สองคือโดย การแจกแจงนั่นคือ การแจกแจกสมาชิกแต่ละตัวของเซต การนิยามเซตด้วยการแจกแจงสมาชิกถูกเขียนแทนด้วยการแจกแจงสมาชิกของเซตภายใน วงเล็บปีกกา:- C = {4, 2, 1, 3}
- D = {น้ำเงิน, ขาว, แดง}
ลำดับที่สมาชิกของเซตถูกเรียงในการนิยามแบบแจกแจกสมาชิกไม่มีความสำคัญ เช่นเดียวกันกับจำนวนสมาชิกที่ซ้ำกันในรายการแจกแจง ตัวอย่างเช่น- {6, 11} = {11, 6} = {11, 11, 6, 11}
เป็นเซตที่เหมือนกันทุกประการ เพราะว่าการแจกแจงสมาชิกเซตมีความหมายเพียงว่าองค์ประกอบแต่ละตัวในรายการแจกแจงเป็นสมาชิกตัวหนึ่งของเซตนั้นแค่นั้นเองสำหรับเซตที่มีสมาชิกจำนวนมาก การระบุของสมาชิกสามารถเขียนอย่างย่อได้ ตัวอย่างเช่น เซตของเลขจำนวนเต็มบวกหนึ่งพันตัวแรกสามารถเขียนแบบแจกแจงได้เป็น:- {1, 2, 3, ..., 1000},
ที่ซึ่ง การเว้นถ้อยคำไว้ให้เข้าใจเอาเอง (อิลิปซิส, "...") ระบุว่ารายการแจกแจงดำเนินต่อไปในทางที่เห็นได้ชัด อิลิปซิสอาจถูกใช้ในที่ซึ่งเซตมีสมาชิกไม่จำกัด ดังเช่น เซตของ เลขจำนวนเต็มคู่บวก เขียนแทนได้ว่า {2, 4, 6, 8, ... }เราอาจใช้เครื่องหมายปีกการะบุเซตด้วยการนิยามได้ ในการใช้นี้ ปีกกามีความหมายว่า "เซตของ ...ทั้งหมด" ดังนั้น E = {playing-card suits} คือเซตซึ่งสมาชิกสี่ตัวของมันคือ ♠, ♦, ♥, และ ♣ รูปแบบทั่วไปของมันคือ การใช้เครื่องหมายตัวสร้างเซต ตัวอย่างเช่น เซตF ของเลขจำนวนเต็มที่น้อยที่สุดยึ่สิบตัวซึ่งยกกำลังสองแล้วหักออกด้วยสี่สามารถเขียนได้เป็น:- F = { - 4 : n เป็นเลขจำนวนเต็ม; และ 0 ≤ n ≤ 19}
ในการนิยามนี้ เครื่องหมาย โคลอน (":") หมายถึง "โดยที่" และ การเขียนให้รายละเอียดสามารตีความได้ว่า "เซตF เป็นเซตของเลขทั้งหมดของนิพจน์ - 4, โดยที่ n เป็นเลขจำนวนเต็มตั้งแต่ 0 ถึง 19" บางครั้ง เส้นตรงแนวดิ่ง ("|") ถูกใช้แทนโคลอน (":")บ่อยครั้งที่พวกเราต้องเลือกระบุเซตแบบนิยามหรือแบบแจกแจง ในตัวอย่างข้างต้น จะเห็นว่า A = C และ B = Dคำศัพท์และสัญลักษณ์ของเซต
- เราอาจจะคิดว่าเซต คือ กลุ่มของสิ่งต่างๆซึ่งมีกฎเกณฑ์ชัดเจนว่าสิ่งใดอยู่ในเซตและสิ่งใดไม่ได้อยู่ในเซต สิ่งที่อยู่ในเซตเรียกว่าสมาชิกของเซต โดยทั่วไปจะแทนเซตด้วยตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ เช่น A,B,C และแทนสมาชิกของเซตซึ่งยังไม่เจาะจงว่าคือตัวอะไรด้วยอักษรภาษาอังกฤษตัวพิมพ์เล็ก เช่น a,b,c
- วิธีเขียนเซต มีอยู่ 3 แบบ
- แบบข้อความ อธิบายเซตด้วยถ้อยคำ
- แบบแจกแจงสมาชิก เขียนสมาชิกทั้งหมดภายใต้ปีกกา {} และใช้จุลภาคคั่นระหว่างคู่
- แบบบอกเงื่อนไขของสมาชิก เขียนเซตในรูปแบบ {x | เงื่อนไขของ x}
- สมาชิกของเซตเป็นจำนวนหรือสิ่งใดก็ได้ เป็นเซตก็ได้
- เซตที่เท่ากัน เซตจะแตกต่างกันหรือไม่ขึ้นอยู่กับว่าสมาชิกต่างกันหรือไม่ โดยเซตสองเซตจะเท่ากันเมื่อมีสมาชิกเหมือนกัน
- เซตจำกัดและเซตอนันต์ เซตจำกัดคือเซตที่เราสามารถระบุได้ว่ามีสมาชิกกี่ตัว เซตอนันต์คือเซตที่ไม่ใช่เซตจำกัด
- เซตว่างคือเซตที่ไม่มีสมาชิกเลย
- เอกภพสัมพัทธ์ คือเซตที่ใช้กำหนดขอบเขตของสิ่งที่กำลังพิจารณา แทนด้วย U
- เซตของจำนวนบางชนิด เช่น N = เซตของจำนวนนับ, I = เซตของจำนวนเต็ม, Q = เซตของจำนวนตรรกยะ, R = เซตของจำนวนจริง, C = เซตของจำนวนเชิงซ้อน
- สับเซต A เป็นสับเซตของ B หมายความว่าสมาชิกทุกตัวของ A เป็นสมาชิกของ B
- เพาเวอร์เซต ของ A คือเซตที่ประกอบด้วยสับเซตทั้งหมดของ A เขียนแทนโดย P(A)
การดำเนินการของเซต
- ยูเนียน ของ A และ B คือเซตที่เกิดจากการรวบรวมสมาชิกของ A และ B เข้าไว้ด้วยกัน
- อินเตอร์เซกชัน ของ A และ B คือเซตที่ประกอบด้วยสมาชิกที่เหมือนกันของ A และ B
- ผลต่าง A – B คือเซตที่ประกอบด้วยสมาชิกของ A ที่ไม่ใช่สมาชิกของ B
- คอมพลีเมนต์ ของ A เขียนแทนด้วย A’ คือสับเซตของ U ที่ประกอบด้วยสมาชิกที่ไม่อยู่ ใน A
การนับจำนวนสมาชิกของเซต
- ถ้า A เป็นเซตจำกัด เราใช้สัญลักษณ์ n(A) หรือ |A| แทนจำนวนสมาชิกของ A
- การนับจำนวนสมาชิกของ U ที่ไม่อยู่ใน A อาจใช้สูตร n(A’) = n(U)-n(A)
สมบัติของเซตที่ควรทราบ
ให้ A, B, C เป็นเซตย่อยของเอกภพสัมพัทธ์ U สมบัติต่อไปนี้จะเป็นจริง- กฎการสลับที่
- กฎการเปลี่ยนกลุ่ม
- กฎการแจกแจง
- กฎการเอกลักษณ์
ที่มา : https://th.wikipedia.org
ไม่มีความคิดเห็น:
แสดงความคิดเห็น